Margin to Margin: Arts-Based Research for Digital Outreach to Marginalised Communities
نویسندگان
چکیده
منابع مشابه
From Margin to Sparsity
We present an improvement of Novikoff's perceptron convergence theorem. Reinterpreting this mistake bound as a margin dependent sparsity guarantee allows us to give a PAC-style generalisation error bound for the classifier learned by the perceptron learning algorithm. The bound value crucially depends on the margin a support vector machine would achieve on the same data set using the same kerne...
متن کاملMargin Based Active Learning
We present a framework for margin based active learning of linear separators. We instantiate it for a few important cases, some of which have been previously considered in the literature. We analyze the effectiveness of our framework both in the realizable case and in a specific noisy setting related to the Tsybakov small noise condition.
متن کامل2 Margin Distribution and Soft Margin
Typical bounds on generalization of Support Vector Machines are based on the minimum distance between training examples and the separating hyperplane. There has been some debate as to whether a more robust function of the margin distribution could provide generalization bounds. Freund and Schapire (1998) have shown how a diierent function of the margin distribution can be used to bound the numb...
متن کاملPerturbation based Large Margin Approach for Ranking
The use of the standard hinge loss for structured outputs, for the learning to rank problem, faces two main caveats: (a) the label space, the set of all possible permutations of items to be ranked, is too large, and also less amenable to the usual dynamic-programming based techniques used for structured outputs, and (b) the supervision or training data consists of instances with multiple labels...
متن کاملMargin-based Decomposed Amortized Inference
Given that structured output prediction is typically performed over entire datasets, one natural question is whether it is possible to re-use computation from earlier inference instances to speed up inference for future instances. Amortized inference has been proposed as a way to accomplish this. In this paper, first, we introduce a new amortized inference algorithm called the Margin-based Amor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Community Informatics
سال: 2018
ISSN: 1712-4441
DOI: 10.15353/joci.v14i1.3407